If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-320x+1599=0
a = 12; b = -320; c = +1599;
Δ = b2-4ac
Δ = -3202-4·12·1599
Δ = 25648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25648}=\sqrt{16*1603}=\sqrt{16}*\sqrt{1603}=4\sqrt{1603}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-320)-4\sqrt{1603}}{2*12}=\frac{320-4\sqrt{1603}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-320)+4\sqrt{1603}}{2*12}=\frac{320+4\sqrt{1603}}{24} $
| 0.2m=2.4 | | 7-4y=-9y+32 | | 15-10x=5+8x | | 7f+4=2f+8 | | 78-5k=4k+15 | | 3y+2y=42 | | v=250000*90/3 | | 31=7x-81 | | v=500*90/3 | | 1.4=t/5.5 | | x-15=20x/100 | | w/2.9=5.7 | | 9w+322(244w)=910 | | 4x+10=3x+27= | | 2x*3x=100 | | 7(2a-4)=2(a+4 | | 4/x=0.1/1 | | 12+48=8x+20 | | x(1+0.025(10/12))+x(1+0.025(2/12))=0 | | 8x+24=10x+12 | | (5/4w-20)+2=-(8/w-5) | | (6-7x)(3x-2)=-1 | | (6-7x)(3x-2)=1 | | 6x+32=18 | | 0.50y+15=-3 | | 6a-7=5a+2a= | | 5^x-3=16/5^x+3 | | 7.4-x=10 | | 14=3x-2(3x+11) | | x/2+3/2=2x-1/2 | | (w+7/w+3)+1=w+5/w-1 | | w+7/w+3+1=w+5/w-1 |